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Abstract—This paper introduces a novel hybrid forecasting 
model for state-wide energy markets, combining a Graph-based 
Patch Informer (GPI) and Deep State Sequential State Memory 
(DSSM) architecture to predict electricity prices. Integrating 
spatial-temporally variable weather data can introduce noise and 
inconsistencies, as different regions within a state experience 
varying weather conditions. The GPI-DSSM model avoids these 
issues by relying solely on demand and price data, focusing on 
intrinsic and hidden relationships between aggregate demand and 
regional reference price (RRP). By using aggregate demand as a 
hidden state within the Gated Recurrent Unit (GRU) based DSSM, 
the model captures dependencies driving price fluctuations, while 
the GPI transformer handles long-range temporal patterns. This 
hybrid architecture provides robust, accurate forecasts, 
demonstrating that the geo-spatial-temporal limitations of 
weather data on aggregate demand forecasting can be effectively 
managed by focusing on core market variables like demand and 
price.  

Keywords—Regional Reference Price, State-wide energy systems, 
Electricity Markets, Graph Patch Informer, Deep Sequential State 
Memory 

I. INTRODUCTION  
In electricity markets, market participants rely on the state-

wide Regional Reference Price (RRP) to make critical decisions 
regarding energy dispatch, bidding, and operations. RRP, set by 
market operators, reflects the overall supply-demand ($/MWh) 
dynamics at the state level, making accurate forecasting of RRP 
and aggregate demand essential for effective market 
participation. Notably, the RRP is influenced solely by the 
aggregate demand requirements across the entire system and 
does not factor in localized variables like transmission 
constraints or distributed generation, making it a more stable 
indicator of state-wide demand. Traditionally, forecasting 
models have incorporated weather data to predict demand 
fluctuations. However, for state-wide markets, the spatial 
variability of weather conditions across many regions introduces 
noise, complicating the integration of this data into forecasts. 

For instance, models like Spatio-Temporal Convolutional 
Graph Neural Networks (ST-GNN) effectively capture local 
dependencies but struggle to scale for broader economic price 
forecasting needs of the market [1]. Furthermore, these models 
do not capture the hidden relationships between energy demand 
and RRP. Similarly, Self-Supervised Transformer Variant [2] 
for Renewable Energy Forecasting focuses on renewable output, 
heavily relying on weather data, which limits its use for RRP 

forecasting where aggregate demand is a more dominant driver, 
and has not been tested for short-term demand interdependency. 

Similarly, the transformer-based approach like the Graph 
Transformer have been proposed for time-series forecasting 
(TSF) and long-term energy forecasts [3]. Recent work on 
hybrid CRN-GNN models also combines convolutional 
recurrent networks (CRN) and graph neural networks (GNN) to 
offer probabilistic load forecasting [4] with a similar approach. 
However, they also fall short on addressing demand 
interdependency.  

In contrast, recent studies have explored energy demand 
forecasting models that do not rely on weather inputs, focusing 
on internal economic and demand-related variables, which are 
keenly prompted and followed by market participants. Support 
vector regression model that forecasts energy demand based on 
economic factors, effectively bypasses weather-related 
uncertainties [5]. Similarly, forecasting model for multi-energy 
systems that optimizes market participation without 
incorporating weather data has been introduced [6], which 
provide fairly accurate results for long-range forecasting. While 
these approaches demonstrate that reliable forecasts can be 
achieved without external and independent inputs, they also fall 
short in addressing the interdependencies in short-term everyday 
forecasts, which is crucial for market participants. 

Given these research gaps, a more targeted approach is 
needed—one that focuses on the direct relationship and 
interdependencies between aggregate demand and RRP, without 
the need for spatially-dependent noisy weather variables inputs. 
This paper introduces a novel hybrid model combining a GPI 
and DSSM. The GPI-DSSM model uses only historical RRP and 
demand data to forecast future prices, capturing both long-term 
and short-term dependencies as illustrated in Fig. 1. The GPI 
component handles long-term dependencies, while the DSSM 
effectively manages short-term fluctuations, ensuring the model 
adapts to real-time price and demand movements. This 
capability directly addresses the limitations of earlier models and 
strengthens the practical applicability of RRP and demand 
forecasting in large-scale energy market participants for 
everyday scheduled dispatch decisions. This paper is organized 
as follows: Section II discusses data collection and 
preprocessing; Section III covers the model implementation; 
Sections IV explains the forecasting and hyperparameter tuning 
of the GPI-DSSM model, with the discussion and conclusions 
covered in Section V. 
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Fig. 1. Flowchart of the Hybrid GPI-DSSM Forecast Model 

 

II. DATA COLLECTION AND PRE-PROCESSING 
The dataset used for this research comprises state-wide 

electricity market data, spanning Regional Reference Price  and 
Total Demand from 2009 to September, 2024. The data,  sourced 
from Australian Energy Market Operator (AEMO) [7], 
represents hourly market dynamics and plays a crucial role in 
modelling energy dispatch decisions with large-scale market 
participants. Unlike other models explored in previous studies 
[1], [2], this study focuses purely on RRP and demand 
relationships. 

A. Data representation and scaling 
The data set used in this study is represented as 𝕏𝕏 ∈ 𝑹𝑹𝑻𝑻 × 𝟐𝟐, 

as shown in (1), where 𝜯𝜯 denotes the number of time points, and 
2 feature pairs consisting of 𝐑𝐑𝐑𝐑𝐑𝐑 𝑟𝑟𝒕𝒕 and total demand 𝑑𝑑𝒕𝒕 at each 
time step t. 

                             𝕏𝕏 = �
𝑟𝑟1 𝑑𝑑1
⋮ ⋮
𝑟𝑟𝑡𝑡 𝑑𝑑𝑡𝑡

�                                  (1) 

The wide variability of 𝑟𝑟𝒕𝒕  and 𝑑𝑑𝒕𝒕 , particularly the extreme 
spikes in RRP during market fluctuations, necessitates Min-Max 
scaling to standardize the dataset. Each feature is rescaled into 
the interval [−1, 1] using the transformation shown in (2). 

                          𝑥𝑥𝑡𝑡′ = 2(𝑥𝑥𝑡𝑡−𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚)
(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚−𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚)

− 1                          (2) 

In (2) 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 represent the minimum and maximum 
values each feature. This scaling ensures that both the RRP and 
Total Demand are normalized to the same range preventing any 
bias due to different scales. This approach is more robust and 
computationally efficient compared to models such as ST-GNN 
[1] and hybrid CRN-GNN models [4], which handle highly 
volatile external factors like weather data, and suffer from noisy 
inputs. 

B. Resampling and Time Aggregation 
The dataset is resampled to hourly intervals to ensure 

consistency in the time series representation. The resampled 
dataset, denoted by 𝕏𝕏ℎ  is computed by averaging data points 
within each hour. 

                                 𝕏𝕏ℎ = 1
𝑁𝑁ℎ
∑ 𝕏𝕏𝑖𝑖
𝑁𝑁ℎ
𝑖𝑖=1                                     (3) 

In (3), 𝑵𝑵ℎ represents the number of data points within each 
hour. This resampling method is grounded in its ability to reduce 
high-frequency noise, which can destabilize model training and 
lead to overfitting, particularly in large-scale systems where 
frequent fluctuations are common. By smoothing out these 
short-term anomalies, resampling enables the model to focus on 
more stable demand and price trends, enhancing both robustness 
and accuracy in large-scale market forecasting.  Compared to 
models like Transformer-based Graph Models [3], which often 
integrate high-frequency, multi-dimensional inputs such as 
weather data, this approach focuses on simplifying the input 
while retaining essential market dynamics like price and demand. 
This approach ensures that the model remains scalable and 
efficient while capturing core market behaviors without the 
noise introduced by volatile external factors.  

C. Sequence Creation for Time-Series Modelling 
To capture the temporal dependencies, the dataset is divided 

into sequences of 300 hours (inputs) to forecast the next 24 hours 
(outputs). The input and output sequences 𝑆𝑆𝒊𝒊 and 𝑌𝑌𝒊𝒊 respectively, 
for each sample 𝑖𝑖 is formulated as shown in (4) 

                           𝑆𝑆𝑖𝑖 = �
𝑥𝑥𝑖𝑖
𝑥𝑥𝑖𝑖+1…
𝑥𝑥𝑖𝑖+299

�,   𝑌𝑌𝑖𝑖 = �
𝑥𝑥𝑖𝑖+300
𝑥𝑥𝑖𝑖+301…
𝑥𝑥𝑖𝑖+323

�                       (4)  

 As shown in (4), the total number of sequences 𝑁𝑁 and total 
length of the dataset 𝑇𝑇 is determined by (5): 

                                𝑁𝑁 = 𝑇𝑇 − 300− 24 + 1                           (5) 
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Each sample i provides a matrix of input sequences 𝑆𝑆𝑖𝑖 ∈
𝑹𝑹𝟑𝟑𝟑𝟑𝟑𝟑 × 𝟐𝟐  and target sequences 𝑌𝑌𝑖𝑖 ∈ 𝑹𝑹𝟐𝟐𝟐𝟐 × 𝟐𝟐 . This approach 
ensures the model captures both long-term (300-hour sequences) 
and short-term (24-hour predictions) dependencies, providing a 
structured approach to time-series forecasting. Unlike ST-GNN, 
which relies on complex spatial-temporal data [1], this model 
operates with clean and concise RRP and demand sequences, 
reducing model complexity and improving scalability for state-
wide markets. 

D. Mini-Batch Processing and DataLoader 
For efficient model training, the input sequence 𝑆𝑆 and target 

sequences 𝑌𝑌  are grouped into mini-batches, which allows for 
parallel processing and faster convergence during training. Each 
mini-batch 𝐵𝐵𝑗𝑗 is structured as shown in (6): 

                             𝐵𝐵𝑗𝑗 = [𝑆𝑆𝑗𝑗 𝑌𝑌𝑗𝑗] ∈ 𝑹𝑹𝟖𝟖 × 𝟑𝟑𝟑𝟑𝟑𝟑× 𝟐𝟐                          (6) 

 By using mini-batch processing, the model can efficiently 
learn from the large dataset while maintaining scalability, a key 
factor for state-wide aggregate RRP and demand forecasting. 
Other models, such as CRN-CNN [4], introduce additional 
overhead by incorporating external factors, making them less 
suited for real-time or large-scale forecasting tasks. 

III. MODEL IMPLEMENTATION 
Given the input sequence 𝑆𝑆𝑖𝑖 ∈ 𝑹𝑹𝟑𝟑𝟑𝟑𝟑𝟑 × 𝟐𝟐, where each element 

represents RRP and total demand, the GPI creates context-aware 
embeddings. These embeddings are then processed by the 
DSSM, which uses GRU to evolve the hidden states over time, 
adjusting the forecast based on immediate demand-price 
relationships.  

A. Graph Patch Informer (GPI) Architecture 
The GPI is based on a Transformer architecture that uses a 

multi-head self-attention mechanism to model temporal 
relationships across the input sequence. Multi-head attention and 
feedforward layer normalization is examined for integration into 
the GPI-DSSM hybrid model. 

1) Multi-Head Attention and Output 
The self-attention mechanism computes attention scores 

between all pairs of time steps in the input sequence. As shown 
in (7), for each time step, a query ℚ, key 𝕂𝕂, and value 𝕍𝕍 are 
computed as linear transformations of sequence 𝑆𝑆𝑖𝑖: 

                 ℚ = 𝑊𝑊𝑞𝑞𝑆𝑆𝑖𝑖, 𝕂𝕂 = 𝑊𝑊𝑘𝑘𝑆𝑆𝑖𝑖 , 𝕍𝕍 = 𝑊𝑊𝑢𝑢𝑆𝑆𝑖𝑖                   (7) 

Where 𝑊𝑊𝑞𝑞 , 𝑊𝑊𝑘𝑘 , 𝑊𝑊𝑣𝑣  ∈ 𝑹𝑹𝐝𝐝𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦  × 𝟐𝟐  are learnable weight 
mathematics, and 𝐝𝐝𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦 is the hidden dimension. The result of 
attention weights that determines the contribution in each time 
step to every other time step with the transformer’s multi-head 
attention mechanism, allows the model to capture relationships 
across different temporal scales. This implementation aligns 
with similar methodologies outlined in published literature [8], 
where the multi-head attention mechanism effectively captures 
non-linear patterns in time-series data, allowing the model to 
attend to subtle market fluctuations without being biased by 
external factors. This flexibility is valuable for RRP forecasting, 
ensuring that price shifts are driven by demand and are 
accurately reflected in the model’s output. 

2) Feed-Forward and Layer Normalization 
After the attention mechanism, the output is passed through 

a feed-forward network (FFN), which introduces non-linearity. 
The FFN consists of two linear transformations with a rectified 
linear unit (ReLU) activation that are represented by (8). 

                FFN(𝑥𝑥) = max(0, 𝑊𝑊1𝑥𝑥 + 𝑏𝑏1)𝑊𝑊2 + 𝑏𝑏2               (8) 
Where  𝑊𝑊1  and 𝑊𝑊2  ∈ 𝑹𝑹𝐝𝐝𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦  × 𝐝𝐝𝐟𝐟𝐟𝐟  are learnable weight 

matrices and dff  is the dimension of feed-forward layer. The 
result is then passed through Layer Normalization to ensure 
stability during training as given in (9). 

                  ℍ𝑖𝑖 = LayerNorm(𝑥𝑥 + FFN(𝑥𝑥))                  (9) 
This output ℍ𝑖𝑖 ∈ 𝑹𝑹𝟑𝟑𝟑𝟑𝟑𝟑 × 𝐝𝐝𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦  represents the enriched 

temporal embeddings for the input sequence produced by the 
GPI. The FFN configuration is a common strategy for stabilizing 
non-linear temporal relationships in time-series data and 
identifies long-range dependencies.  

B. Deep Sequential State Memory (DSSM) Architecture 
The DSSM component models short-term dependencies and 

captures the influence of aggregate demand on RRP using a 
Gated Recurrent Unit (GRU). The GRU updates its hidden state 
over time, learning to model the impact of demand fluctuations 
on price changes. 

For each time step 𝑡𝑡, the GRU updates its hidden state ℎ𝑡𝑡 
based on the input 𝑥𝑥𝑡𝑡 (RRP and demand) and previous hidden 
state ℎ𝑡𝑡−1 . The update gate 𝑧𝑧𝑖𝑖  determines how much of the 
previous hidden state is retained by using sigmoid function to 
quash the output between 0 and 1, which is best represented by 
(10). 

                  𝑧𝑧𝑡𝑡 = σ(𝑊𝑊𝑧𝑧𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑧𝑧ℎ𝑡𝑡−1 + 𝑏𝑏𝑧𝑧)                     (10) 
The reset gate 𝑟𝑟𝑡𝑡  controls how much of the past information 

is forgotten, and the candidate hidden gate ℎ�𝑡𝑡 is computed based 
on both the reset hidden state and the current input equation, as 
shown in (11, 12).  

                  𝑟𝑟𝑡𝑡 = σ(𝑊𝑊𝑟𝑟𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑟𝑟ℎ𝑡𝑡−1 + 𝑏𝑏𝑟𝑟)                    (11) 
                ℎ�𝑡𝑡 = tanh(𝑊𝑊ℎ𝑥𝑥𝑡𝑡 + 𝑟𝑟𝑡𝑡(𝑈𝑈ℎℎ𝑡𝑡−1) + 𝑏𝑏ℎ)               (12) 

The final hidden state is a combination of the past hidden 
state and the candidate hidden state weight by the update gate. 
The relationship is best represented as shown in (13). 

                         ℎ𝑡𝑡 = (1− 𝑧𝑧𝑡𝑡)ℎ𝑡𝑡−1 + 𝑧𝑧𝑡𝑡ℎ�𝑡𝑡                   (13) 
The GRU-based architecture is effective in learning both 

demand and price relationships, especially when dealing with 
multi-variate time-series data. Similar approaches, such as those 
found in other advanced optimization driven GRU and Long-
Short Term Memory (LSTM) frameworks [9], have 
demonstrated success in enhancing model accuracy through 
advanced parameter tuning. In a similar approach, this hybrid 
GRU optimizes parameters to capture critical demand-price 
relationships without reliance on additional external features. 

C. GPI-DSSM Hybrid Output and Feed-Forward Prediction 
The final step of the GPI-DSSM model combines the outputs 

from the GPI and DSSM components. The last 24 time steps 
from the GPI output ℍ𝑖𝑖 are concatenated with the GRPU output  
ℎ𝑡𝑡, creating a combined output C𝑖𝑖 as shown in (14). 
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Fig.  2. Comparison of Original and Feed-Forward Output for RRP and Total Demand 

 
                      C𝑖𝑖 = Concat(ℍ𝑖𝑖,276:300, ℎ𝑡𝑡)                   (14) 

This combined output is passed through a final fully 
connected layer FFN to generate the final 24-hour predictions 
for both RRP and Total Demand, best represented in (15). 

                                 𝑦𝑦�𝑖𝑖 = 𝑊𝑊𝑓𝑓𝐶𝐶𝑖𝑖 + 𝑏𝑏𝑓𝑓                            (15) 
Where 𝑊𝑊𝑓𝑓 ∈ 𝑹𝑹�𝒅𝒅𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎+𝒅𝒅𝒈𝒈𝒈𝒈𝒈𝒈� × 𝟐𝟐  and 𝑏𝑏𝑓𝑓 ∈ 𝑹𝑹𝟐𝟐  are learnable 

parameters. The output 𝑦𝑦�𝑖𝑖 ∈ 𝑹𝑹𝟐𝟐𝟐𝟐×𝟐𝟐  represents the 24-hour 
forecast of RRP and Total Demand. This hybrid model is 
adaptable to handle different time scales by adjusting the 
sequence length parameters, allowing it to perform both short-
term (hourly) and long-term (daily) forecasts as needed for 
various market participants. This flexibility makes the GPI-
DSSM model particularly suitable for dynamic and large-scale 
market participants. 

D. Preliminary Model Analysis 
The FFN used in the final prediction layer allows the model 

to map the combined GPI-DSSM embeddings to the target 
outputs. Fig. 2. shows the comparison between the original 
values of RRP and Total Demand versus the predicted outputs 
generated by the feed-forward process for a one-day period. 
This close alignment between the predicted and actual values 
emphasizes the model’s proficiency in capturing market 
behavior, particularly in state-wide aggregated data scenarios, 
where spatial-temporal variability is not as easily incorporated, 
as noted in previous works [5]. The performance of the model 
further aligns with studies [2], [10], where prediction accuracy 
was maintained even with simplified inputs, demonstrating how 
the advanced architecture of GPI-DSSM can deliver high 
accuracy in energy forecasting.  

E. Loss Function and Optimization 
The model is optimized using Smooth L1 Loss (Huber Loss), 

which is robust to outliers in the RRP data as illustrated in (16): 

    𝐿𝐿(𝑦𝑦, 𝑦𝑦�) = � 0.5(𝑦𝑦− 𝑦𝑦�)2

𝛿𝛿(|𝑦𝑦 − 𝑦𝑦�| − 0.5𝛿𝛿)
𝑖𝑖𝑖𝑖 |𝑦𝑦 − 𝑦𝑦�| < 𝛿𝛿  
𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

    (16) 

Where 𝑦𝑦 is the true value and 𝑦𝑦� is the model’s prediction, 
and 𝛿𝛿  is the threshold for switching between Mean Squared 
Error (MSE) for small error and Mean Absolute Error (MAE) 
for larger errors. Smooth L1 Loss is chosen for its balanced 
approach for minimizing both minor and major errors, which is 
particularly beneficial in context of RRP where both small 
fluctuations and larger outliers impact forecasting accuracy. 

This makes it more robust for large-scale market data, providing 
improved tolerance compared to loss functions such as MSE, 
which over-penalizes outliers, or MAE, which lacks 
smoothness. The Adam optimizer with a learning rate of 𝛼𝛼 =
0.001 is used to train the model, ensuring fast convergence.  

IV. FORECASTING AND HYPERPARAMETER TUNING 
Hyperparameter tuning plays a crucial role in ensuring the 

model’s ability to generalize effectively and capture the intricate 
patterns in RRP and Total Demand. Properly tuning parameters 
like 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖and 𝑛𝑛𝑛𝑛𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is essential for balancing 
model complexity and performance, and it directly affects the 
predictive accuracy of the hybrid GPI-DSSM model. The 
impacts of transformer and DSSM parameters are discussed 
further with relevant simulations taken over any 24-hour period. 
TABLE I details the approach used in studying the effects of 
different parameters being increased while ensuring 
independency on each other. 

TABLE I. STUDY OF DIFFERENT SCENARIOS AND PARAMETERS 
USED 

Scenarios Parameters Being Increased Constant Parameters 

A 
𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (8, 12, 16, 20, 24, 28, 

32) 
𝑛𝑛𝑛𝑛𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (2) 
𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (8) 

B 𝑛𝑛𝑛𝑛𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (2, 4, 6, 8) 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (8) 
𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (8) 

C 𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (8, 16, 32, 64) 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (8) 
𝑛𝑛𝑛𝑛𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (2) 

A. Impact of Transformer Parameters 
1) 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 – Hidden dimension of Tranformer: 
The 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 parameter, which controls the hidden dimension 

of the transformer, defines the size of the feature space for each 
time step. A higher 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  allows the model to learn more 
complex patterns, but it can also lead to overfitting if not tuned 
properly. Choosing the right 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  is crucial for capturing 
long-range dependencies without unnecessarily increasing the 
model’s complexity. Simulations for scenario A, as illustrated 
in Fig. 3, show that lower values of 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (such as 8 and 12) 
underfit the data resulting in high MAE of 53.74 and 49.36 
respectively, failing to capture enough price fluctuations, while 
higher values (such as 28 and 32) result in higher complexity 
despite lower MAE of 31.06. An optimal 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 lies between 16 
and 20 for this dataset, providing a balance between model 
expressiveness and generalization, with lowest MAE of 29.79 at 
𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 of 16.  
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Fig.  3. Forecast of RRP with different D model configurations 

2) 𝑛𝑛𝑛𝑛𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙– Transformer Layers: 
The number of layers in the Transformer architecture, 

denoted by 𝑛𝑛𝑛𝑛𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 , controls how deeply the model can 
capture temporal relationships in the data. Increasing the 
𝑛𝑛𝑛𝑛𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  improves the model’s ability to recognize deeper 
patterns but introduces higher computational costs and risks 
overfitting. In the study of Scenario B, as illustrated in the Fig. 
4, the model achieves relatively low error with 2 layers. Adding 
more layers introduces unnecessary complexity without 
improving performance. Further, it also increases the 
computational costs associated with the simulations. 

 

 
Fig.  4. Forecast of RRP with different Num Layer configurations 

B. Impact of DSSM 𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 – DSSM GRU Hidden 
Dimension 

 
Fig.  5. Forecast of RRP with different Hidden Dimension configurations 

 

As observed in Fig. 5, the configuration for Hidden 
Dimension ( 𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) = 8  produced the lowest MAE of 
27.02, indicating best performance in terms of numerical 
accuracy. As the hidden dimension increases, the MAE rises 
with 𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 64 resulting in the largest MAE of 72.02. 
This trend suggests that increasing the hidden dimension 
introduces complexity that may lead to poor generalization and 
overfitting, when judging interdepenency of RRP solely on the 
demand. 

V. DISCUSSION AND CONCLUSIONS 
The empirical results demonstrate that the hybrid GPI-

DSSM model can effectively forecast RRP and Total demand, 
making it a valuable tool for market participants who need to 
anticipate price fluctuations in state-wide energy systems. By 
focusing solely on RRP and Total demand data, the model 
bypasses the spatial-temporal complexities introduced by 
external variables like weather, offering a more straightforward 
and robust approach to large-scale energy forecasting. This 
approach is particularly flexible when dealing with aggregate 
state-wide data where incorporating weather data is unreliable 
due to its Spatio-temporal characteristics across many regions. 

Additionally, hyperparameter tuning is critical in optimizing 
the model’s performance, especially when working with datasets 
that exclude external variables like weather across multiple 
regions. Since no weather-related data is used, the model is 
heavily reliant on historical RRP and Total demand to learn 
patterns and hidden relationships, making careful tuning of these 
internal parameters essential to ensuring capturing hidden 
demand-price relationship across state-wide aggregate data 
forecasts. One hidden potential of this research is related to 
computing power. To reach exponentially limited error potential, 
the model may need to undergo training with even larger datasets 
with significantly larger number of epochs. Future work could 
include advanced versions of the GPI-DSSM model to better 
address geo-spatial temporal challenges, where the model can 
further incorporate hybrid structures that consider both local and 
state-wide influences on demand and price.  
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